Code No: R20A0504 R20 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Regular Examinations, February 2022

Operating Systems

(CSE,	CSE-A	I&N	ſL,	CSE	E-CS	, C	SE-	DS	&	CS	E-]	ΙΟΤ	&	II	')

Roll No	
---------	--

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

*** SECTION-I

1 With a neat Diagram, Discuss the Architecture of LINUX Operating System? [14M] Recall its features?

OR

2 Define Operating System? Explain various operating System Services with clear [14M] examples?

SECTION-II

3 Discuss in detail about importance of Shells and how they contribute to execute [14M] commands? Write a sample shell script to find greatest among three numbers

OR

4 Consider the following set of processes, with the length of the CPU burst given in [14M] milliseconds:

Process	Burst Time	Priority
P1	10	3
P2	1	1
P3	2	4
P4	1	5
P5	5	2

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0. Draw Gantt chart that illustrate the execution of these processes using the non preemptive priority (a smaller priority number implies a higher priority) scheduling algorithm. What is the turnaround time and waiting time of each process?

SECTION-III

5 How Semaphores and Monitors Solve the Synchronization problem. Illustrate [14M] them with clear examples.

OR

6 Consider the following snapshot of a system: Allocation Max Available

Allo	cation	WIAX	Available			
	ABC D	A B C D	ABCD			
Po	0012	0 0 1 2	1520			
P1	$1\ 0\ 0\ 0$	1750				
p2	1354	2 3 5 6				
p3	0632	0 652				
p4	0014	0 6 5 6				

Apply Banker's Algorithm and determine whether the system is in safe state or not?

[14M]

SECTION-IV

7	Define Message Queues? Write the syntax for Creation, Sending and Receiving	[14M]
	information by using Message Queues? Discuss with clear examples?	
	OR	
8	Illustrate any three Page Replacement Algorithms with clear examples.	[14M]
	SECTION-V	
9	Discuss any five system calls for file I/O operations with programming examples	[14M]
	OR	
10	What is disk Management? Discuss the Following Disk scheduling Algorithms	[5M]
	with suitable examples:	[5M]
	a)FCFS	[4M]
	b)SSTF	
	c)SCAN	

R20

Code No: **R20A0503**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Regular Examinations, February 2022

Data Structures Using Python

(CSE, CSE-AI&ML, CSE-CS, CSE-DS & CSE-IOT & IT)

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1 What is polymorphism? Explain different types of polymorphisms with clear [14M] programming examples

OR

2 Define inheritance. What are the benefits of inheritance? What costs are associated [14M] with inheritance? How to prevent a class from inheritance?

SECTION-II

3 Compare and Contrast Linear & Non-Linear Data Structures with illustrative [14M] examples

OR

4 What is Dictionary in Python? Classify various types of Comprehensions and its [14M] applications in programming

SECTION-III

5 Discuss in detail about Linear and Binary Search algorithms [14M]

OR

6 Analyze representation of arrays along with its advantages and disadvantages. Explain [14M] matrix multiplication using arrays with an example

SECTION-IV

7 Write an algorithm to insert new node at the beginning, at middle position and at [14M] the end of a Singly Linked List.

OR

8 List the applications of stacks and Queues to represent polynomial expressions [14M]

SECTION-V

9 Compare and Contrast Weighted Vs Unweighted Graphs? Write the algorithm for [14M] Depth First Search with clear example

OR

10 Discuss about Various Tree Traversal Techniques and its implementation details. [14M]

Code No: **R20A0061**

Time: 3 hours

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Regular Examinations, February 2022 Managerial Economics and Financial Analysis

(CSE, CSE-AI&ML, CSE-CS, CSE-DS & CSE-IOT & IT)

,	,	 	-,	 - 10 - 1	 	
Roll No						

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1 How do you define the micro and macroeconomic concepts and brief on the nature and [14M] scope of managerial economics?

OR

2 Illustrate the law of demand and define demand forecasting, factors governing demand [14M] forecasting and brief on the methods of demand forecasting.

SECTION-II

3 Discuss the form, properties and limitations of Cobb-Douglas production function and brief **[14M]** on economies of scale.

OR

4 Discuss the importance of Break-even Analysis (BEA) and examine the determination of [14M] Break-Even Point and its managerial significance.

SECTION-III

5 What are the basic features of monopolistic competition, explain the equilibrium of firm [14M] and industry in both the short-run and long-run under monopolistic competition?

OR

6 What are the common features of business organizations and discuss the advantages and **[14M]** limitations of a joint stock company in comparison of other firms of business forms?

SECTION-IV

7 Examine the need for capital for a business, illustrate the types of capital and methods, [14M] sources of raising finance for a business form.

OR

8 Explain the proformas of trading account, profit and loss account and balance sheet with [14M] appropriate proformas.

SECTION-V

9 XYZ Co.Ltd.is proposing to undertake one project. Two projects A and B are available. [14M] The initial cost of the Project in each case is Rs. 40,000/-.A discount factor of 10% is used to compare the projects .Cash flows after taxes as follows

	Cash flows after taxes (in Rs.)	
Year	Project 'A'	Project 'B'
1	15,000	5,000
2	20,000	15,000
3	25,000	20,000
4	15,000	30,000
5	10,000	20,000

Which one do you recommend under Net Present Value Index method? And why

OR

10 ABC company Ltd provides you following balance sheet on 31st March 2021:(in Rs)

Libailities	Amount	Assets	Amount
Equity shar capital @Rs 100	5,00,000	Fixed assets	4,00,000
General Reserve	50,000	Inventories	1,00,000
8% Debentures	1,00,000	Sundry Debtors	80,000
Sundry creditors	30,000	Rent receivable	20,000
Bills payable	40,000	Cash and bank	1,20,000
Outstanding interest	8,000	Prepaid expenses	20,000
Retained earing	22,000	Preliminary expenses	10,000
	7,50,000		7,50,000

Additional Information:

Sales during the year Rs. 14,00,000

Gross profit 40% of sales

Net profit after tax Rs. 1,50,000

Opening inventory Rs 68,000

Your required to calculate :

1. Current ratio; 2. Quick Ratio; 3. Debt equity Ratio; 4. Fixed assets turnover ratio

5. Stock turnover ratio.

[14M]

Code No: R20A0504 R20 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Regular Examinations, February 2022

Operating Systems

(CSE,	CSE-A	I&N	ſL,	CSE	E-CS	, C	SE-	DS	&	CS	E-]	ΙΟΤ	&	II	')

Roll No	
---------	--

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

*** SECTION-I

1 With a neat Diagram, Discuss the Architecture of LINUX Operating System? [14M] Recall its features?

OR

2 Define Operating System? Explain various operating System Services with clear [14M] examples?

SECTION-II

3 Discuss in detail about importance of Shells and how they contribute to execute [14M] commands? Write a sample shell script to find greatest among three numbers

OR

4 Consider the following set of processes, with the length of the CPU burst given in [14M] milliseconds:

Process	Burst Time	Priority
P1	10	3
P2	1	1
P3	2	4
P4	1	5
P5	5	2

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0. Draw Gantt chart that illustrate the execution of these processes using the non preemptive priority (a smaller priority number implies a higher priority) scheduling algorithm. What is the turnaround time and waiting time of each process?

SECTION-III

5 How Semaphores and Monitors Solve the Synchronization problem. Illustrate [14M] them with clear examples.

OR

6 Consider the following snapshot of a system: Allocation Max Available

Allo	cation	WIAX	Available			
	ABC D	A B C D	ABCD			
Po	0012	0 0 1 2	1520			
P1	$1\ 0\ 0\ 0$	1750				
p2	1354	2 3 5 6				
р3	0632	0 652				
p4	0014	0 6 5 6				

Apply Banker's Algorithm and determine whether the system is in safe state or not?

[14M]

SECTION-IV

7	Define Message Queues? Write the syntax for Creation, Sending and Receiving	[14M]
	information by using Message Queues? Discuss with clear examples?	
	OR	
8	Illustrate any three Page Replacement Algorithms with clear examples.	[14M]
	SECTION-V	
9	Discuss any five system calls for file I/O operations with programming examples	[14M]
	OR	
10	What is disk Management? Discuss the Following Disk scheduling Algorithms	[5M]
	with suitable examples:	[5M]
	a)FCFS	[4M]
	b)SSTF	
	c)SCAN	

R20

Code	No: R2	0A 0	0024	~~~~										_ ~		
MA	LLA	RE	DDY	COLL	LEG	E O.	F EI	NG]	INF	CER	RIN	G ð	¢Т	EC.	HNOLO	OGY
	_		(Aut	tonomo	ous In	stitu	ition	– U	GC	, Go	vt. (of In	Idia)	• • • •	
	L	IB.	Tech	I Seme	ester	Reg	gulai	r Ex	kam	ina	tior	ıs, F	eb	rua	ry 2022	
Probability and Statistics																
		(C	SE, CS	<u>SE-AI8</u>	<u>ML,</u>	CSI	£-CS	<u>, CS</u>	SE-L	<u>)S 8</u>	e CS	SE-I	OT	& I	T)	
			Rol	l No												
Time	2 h	Ľ											N		Maulta, 70	
Time: Note:	5 nours This au	Actio	n naner	Consist	s of 5	Sect	ions	Ang	wor	FIV	FO	necti		Cho	viarks: 70 osing ONE	
Questio	on from	each	SECTI	ON and	each	Oues	stion of	carrie	wei es 14	1 mai	rks	uesti	uns,	Cho	Using OINE	2
Questi	on nom	each	blen	ion und	cuen	Que	***	*	05 1	1 11100	IK5.					
						SF	ECTI	ON-	I							
1	a)	A ra	andom	variable	X has	the f	follov	ving	prot	babil	ity fi	uncti	on:			[7M]
		X:	0	1	2	3	4	5	6	5	7					
		P(X = T)	(): 0	k	2k 1	2k	3k	k^2	2l	< ²	7k	^2+k				
	b)	Find	1 (1) the	value o	f K	(11) ł	- Y(X <	< 6), 1	P(X Vh	\geq 6)	, (111 ₎) P(0	< X	.< 5) :+h o	•	[7]]
	0)	nrol	hability	function	gives	meas	suren	lents	Λυ	etwe		<i>i</i> and	IW	iiii a		
		f(x)	$= 12x^{3}$	$-21x^{2}+1$	0x. 0 <	< x <	1.									
		Find	l a num	ber k su	ch tha	$t P(\lambda)$	K≤k)	$= \frac{1}{2}$.								
							OF	ર								
2	a)	Fine	d the sta	andard d	eviatio	on fo	r the	follo	wing	g dis	cret	e dist	tribu	tion:		[7M]
		X:	> 1/0	8 12	16	5	20	24								
	b)	P(X If	$(x): 1/\delta$	$5 \frac{1}{6}$) 3/	8.	1/4	1/1	12							[7]]
	U)	11	I(X) =	$\int (x+1)$	/ 2, -	l < X< e	1									
	Rer	orese	nts the	density of	of a ra	e ndon	n vari	iable	X, f	ind I	E(X)	and	Var	(X).		
	1			5		SE	CTI	ON-I	<u>II</u>		. ,					
3	a)	In 2	56 sets	of 12 to	sses o	f a co	oin, ir	n hov	v ma	any c	ases	one	can	expe	ect 8	[7M]
	- \	head	ds and 4	4 tails.												
	b)	Det	ermine	the bino	mial c	listril	bution	$\frac{1}{2}$	whi	ch m	lean	is tw	vice	the v	ariance	[7M]
		and	sum o	r mean a	ind va	rianc	e is :	3. AI	SO 11	na P	$(X \leq$	≥ <i>3)</i> .				
4	In a no	ormal	distrib	ution. 31	l% of	the it	tems	∖ are ⊔	ınder	r 45	and	8% a	e ov	ver 64	4. Find	[14M]
-	the me	an ar	nd S.D.	of the d	istribu	tion.		ure u			unu	070 4		01 0		[]
						SE	CTIC	DN-I	II							
5	a)	Ten	partici	pants in	a cont	est a	re rar	nked	by t	wo j	udge	es as	follo	ows:		[7M]
		x:	1	6	5	10	3		2	4		9		7	8	
		y:	6	4	9,	8	1	c •	2	3		10	-	5	7	
	h)	Calo	culate the	ne rank (correla	ation	coeff	[1Cler	nt	nd v	from	n tha	air	an da	to.	[7]\/[]
	U)	x.	78 rue 20	89	97		n Detv 69	ween	іла! 59	nu y 7	11011 79	n tile 6	g1v6 58	511 Uð 4	na. 57	
		y:	125	137	156	5	112		107	1	38	1	23	1	08	

OR

6		Find two lines of given below: $n = 18$	regression $\Sigma_{\rm reg} = 12$	n and coe	fficient of $\sum w^2 = 60$	of corn	relation for $f = 06$	the data	[14M]		
		given below: $n - 1$	x - 12	2, <u>2</u> y – 18, E CTION I	$\sum_{x} x = 00$	<i>)</i> , <u></u> у	- 90, <u>y</u> y-	- 48.			
-	``		<u>16</u>	LCHON-I	V						
7	a)	Explain type-I and I	ype-II er	rors					[7 M]		
	b)	b) The mean and Standard deviation of a Sample are 11795 and 14054									
		respectively. If $n = 50$; Find the 95% Confidence interval for the									
		Population mean	IS								
		-		OR							
8	a)	Explain types of sar	npling						[7M]		
-	b)	Random samples of	$^{2}400$ men	and 600 w	vomen we	ere ask	ed whether t	hev	[7M]		
	~)	would like to have	flyover	near their r	esidence	200 n	men and 325	women	[,]		
		would like to have a	a nrono a	al Tost the	hypotho	ic that	t proportiona	of mon			
		and woman in favor	r of the r	ii. Test the	nypotnes	aninat	that that are	or men			
				proposal, a	le same a	gamst	that they are	inot at			
		5% level.	CI	ECTION	. 7						
			<u>SI</u>	ECTION-	<u>v</u>						
9	a)	Explain test for sing	gle mean i	in small sa	mples				[7M]		
	b) In one sample of 8 observations, the sum of the squares of deviations of the							[7M]			
		sample values from the sample mean was 84.4 and in the other sample of									
	10 observations it was 102.6. Test whether this difference is significant at										
		5 percent level, give	en that the	e 5 percent	point of	F for r	$n_1 = 7 \text{ and } n_2$	= 9			
		degrees of freedom	is 3.29.		•						
		U		OR							
10	Fit the	Poisson distribution	for the da	ata and test	for good	lness c	of fit at 5%		[14M]		
10	No of	accidents: 0	1	2 3	Δ Δ	5	6				
	No. of	deve: 160	65	2 J 15 31	т 10	5	2				
	10.01	uays. 100	UJ *	+J J4 ********	10	0	4				
			*		-						

R20

II B.Tech I Semester Regular Examinations, February 2022 Computer Organization (CSE, CSE-AI&ML, CSE-CS, CSE-DS) **Roll No** Time: 3 hours Max. Marks: 70 Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks. *** **SECTION-I** Explain different functional units of a digital computer with neat sketch. Recall the [14M] 1 usage of Signed number representations OR 2 Recall the Multiplication algorithms used in Computer Arithmetic. Convert the [14M] following binary number into decimal & octal number: i) (00010.110)2 ii) (000.10110)2 SECTION-II 3 List and explain the steps involved in the execution of a complete instruction [14M] cycle. List the basic symbols used in register transfer Language OR 4 Classify different Types of Instructions used in Computer Organization with an [14M] example. **SECTION-III** 5 Explain direct and immediate addressing Modes. Differentiate CISC and RISC [14M] processors OR Illustrate the micro-programmed control unit(MCU) with a neat diagram and how 6 [14M] instructions will be processed in MCU? **SECTION-IV** 7 Draw a neat block diagram of memory hierarchy in a computer system. Compare [14M] the parameters size, speed and cost per bit in the hierarchy. OR Explain the following mapping techniques used for cache mapping 8 [14M] i) Associative mapping ii) Direct mapping iii) set-associative mapping cache **SECTION-V** 9 Write a short notes on Peripheral devices .With a neat sketch explain the working [14M] principle of DMA OR 10 Discuss with neat diagrams, How Hazards improved in Pipelining. [14M] ******

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

Code No: R20A0506